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Stochastic resonance in the Brusselator model
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~Received 5 April 1999; revised manuscript received 20 September 1999!

Using the Brusselator model, we show that in a simple dynamical system small noise can be converted into
stochastic spikewise oscillations of huge amplitude~bursting noises! in the vicinity of a Hopf bifurcation.
Small periodic signals with amplitude several times less than the noise intensity transform these stochastic
oscillations into quasiperiodic large-amplitude spikewise oscillations or small-amplitude quasiharmonic oscil-
lations, depending on the signal form.

PACS number~s!: 05.40.2a
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There are nonlinear systems that possess a large n
dependent susceptibility@1–5#. In these systems phase tra
sitions can occur under the action of small noises in th
@6#. They can greatly amplify weak signals in the presence
the noise, and the signal-to-noise ratio in them can incre
with noise. The supersensitivity to noises and small signa
observed in different kinds of systems and is called stoch
tic resonance~SR! @1–5#. In particular, SR takes place i
bistable systems where it is characterized by random tra
tions from the one stable state to the other stimulated by b
noise and the signal@1–5#.

In this paper we show that SR can occur in simp
monostable dynamical systems in the vicinity of a Hopf
furcation. We use the Brusselator model as an example.

The Brusselator model is a widely used model of au
catalytic chemical reactions. A scheme of this model is@7#

A→X,2X1Y→3X,B1X→Y1C,X→E, ~1!

whereA andB are the initial chemical substances,C andE
are the final chemical substances, andX andY are the inter-
mediate chemical substances. The second of these reac
is autocatalytic and describes self-production of the s
stance X called the activator. The process of se
reproduction is controlled by substanceY called the inhibitor.
In the simplest case the reactions~1! are described by the
following equations@7,8#:

tu

du

dt
512~A11!u1u2h, ~2!

th

dh

dt
5Au2u2h, ~3!

whereu and h are concentrations of the activator and t
inhibitor, respectively;tx andty are time scales of theu and
h; A is a control parameter. Equations~2! and~3! were ana-
lyzed in @7–10#. The nullcline of Eq.~2! hasL-like shape
@thin curveL in Fig. 1~a!# and intersects the nullcline of Eq
~3! at the pointu5u051 andh5h05A. This point deter-
mines the only equilibrium state. This state is unstable w
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A.Av511a with respect to the perturbations with the fr
quencyv05a21/2, wherea5tu /th .

Let us analyze in more detail the small-amplitude qua
harmonic oscillations forA close toAv whena!1. We seek

FIG. 1. Quasiharmonic and spikewise relaxation oscillatio
the stable limit cycles~a!, the bifurcation diagram~b!, the depen-
dence of the amplitudes of the oscillationsB1 on the control param-
eter A; the forms of the quasiharmonic oscillations~c! and the re-
laxation oscillations~d!. From the numerical solution of Eqs.~2!
and ~3! with a50.01 andA5Aq10.1a51.016 for~a! and ~d!. In
~a! the thin curveL shows the nullcline of Eq.~2!. The upper inset
at the right of~a! shows the limit cycle near the unstable equili
rium stateu5u051 and h5h05A for different values ofDA
5A2Aq , where Aq5Ar5111,5a and DA50.1a for curve 1,
DA50.05a for curve 2,DA520.05 for curve 3,DA520.1a for
curve 4. The unit of time isth .
4603 © 2000 The American Physical Society
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the amplitude of the oscillations as a seriesũ5(u2u0)
5(Bn exp(invt). Substitutingũ into Eqs. ~2! and ~3! and
using the Bogolyubov-Mitropolskii method@11# we find that
the amplitudeB1 is determined by the equation

B1
25

a~A2Av!

a22~A2Av!
. ~4!

From Eq.~4! follows thatdB1 /dA5` at two points@Fig.
1~b!#: A5Av and A5Aq511 3

2 a5Av1 1
2 a. Note that the

difference (Aq2Av) is very small whena!1. This means
that the small-amplitude quasiharmonic oscillations@Fig.
1~c!# occur only for A very close toAv . Their amplitude
increases sharply whenA→Aq and they transform abruptly
into periodical relaxation oscillations atA.Aq . These relax-
ation oscillations have the form of spikes@Fig. 1~d!#. Their
amplitude is proportional toa21@1 and the period is deter
mined by valueth @7,8,12,13#. The limit cycle correspond-
ing to the spikewise oscillations is shown by the thick cur
1 in Fig. 1~a!.

When A is decreased the relaxation oscillations abrup
disappear atA5Ar . The general formula forAr was ob-
tained by Baer and Erneux@14#. From this formula it follows
that Ar5Av1 1

2 a for the Brusselator model up to secon
order ina. ThusAr5Aq.Av and the bifurcation diagram o
the Brusselator model has the form shown in Fig. 1~b!, i.e.,
the Brusselator model is dynamically monostable for all v
ues ofA.

From Fig. 1~b! one can see that the small-amplitu
quasiharmonic and the large-amplitude relaxation osc
tions transform abruptly one into another in a very sm
region nearA5Aq5Ar . It means that small fluctuationsdA
of the parameterA @Fig. 2~a!# nearA5Aq can transform into
huge~bursting! noises related to the random transitions b
tween the quasiharmonic and the relaxation oscillations@Fig.
2~b!#.

The fluctuationsdA5@A(t)2A0#, whereA0.Aq , have
been simulated as a random pulse sequence. The pulse
plitude and duration had a Gaussian distribution with
dispersions2. For stochastic integration we have used t
Euler method to avoid problems with correlations to t
noise. We have chosen an integration step which is at l
an order of magnitude smaller than the mean duration of
random pulses anda. We found that the same results a
obtained by using the fourth-order Runge-Kutta method.

We carried out the numerical analysis of Eqs.~2! and~3!
with a!1 and found the following results. The quasiha
monic oscillations@Fig. 1~c!# arise spontaneously whenA0
satisfies the conditionAv,A0,Aq and the fluctuationsdA
are very small. When the noise intensity@Fig. 2~a!# s ex-
ceeds some critical value (0.006 fora50.01 and A0
51.0145) these oscillations transform into a stochastic
quence of spikes of different amplitudes and duration wh
alternate with quasiharmonic small-amplitude oscillatio
@Fig. 2~b!#. When the noise intensity increases tandems
several spikes appear. They are separated by the interva
the order ofth and their amplitudes are close to each oth
At relatively high values ofs (s.0.02) the stochastic os
cillations transform into the quasiperiodic relaxation spik
wise oscillations~Fig. 1~d!#. Thus the stochastic oscillation
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occur in a certain range ofs (0.006,s,0.02 for a50.01
and A51.0145). Their spectrum is presented by curve b
Fig. 2~g!. We have calculated the spectrum using the st
dard Fast Fourier Transform~FFT!, method and have nor
malized it to the square root of the oscillation power.

We have found that the stochastic oscillations are sup
sensitive to very small external signals. These signals h
been modeled by an additional termb(t) in the right-hand
side of Eq. ~2!. It means that the concentration of initia
substanceB varies with time. Our simulations show that th
stochastic spikewise oscillations@Fig. 2~b!# transform into
small-amplitude quasiharmonic oscillations@Fig. 2~d!# when
the signal has periodic form; in particular, whenb(t)
5b0 cos(vt) with the frequencyv'v0 @Fig. 2~c!#. The
spectrum of the quasiharmonic oscillations is shown
curved in Fig. 2~g!. This effect takes place whenb0.0.2s,
i.e., even when the signal amplitude is about five times l
than the noise intensitys.

When the signal has the form of the small-amplitu
spikes with the period of orderth @Fig. 2~e!# the stochastic
oscillations @Fig. 2~b!# transform into quasiperiodic relax

FIG. 2. Oscillations in the presence of the noise and the sm
signals: fluctuations of the control parameterA ~a!, stochastic spike-
wise oscillations~b!, small sinusoidal signal with frequencyv
.v0 ~c!, the corresponding quasiharmonic oscillations~d!, small
periodic spikewise signal~e!, the corresponding quasiperiodi
spikewise relaxation oscillations~f!, the spectra corresponding t
these oscillations~g!. From the numerical solution of Eqs.~2! and
~3! with a50.01 andA5Aq20.05a, whereAq5Ar5111,5a and
the noise intensitys50.01. The curves b, d, and f, in~g! corre-
spond to the oscillations shown in~b!, ~d!, and~f!. The unit of time
is th .
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ation spikewise oscillations@Fig. 2~f!#. Their spectrum is
shown by curvef in Fig. 2~g!. This effect takes place whe
the spike amplitude is about five times less than the no
intensity s. Thus, small periodic spikewise signals are a
plified more than 104 times in the presence of the fluctu
tions of A. Their amplification does not occur without th
fluctuations.

Our calculations also show that the signal-to-noise ra
~SNR! reaches a maximum ats.0.015a. This value lies
approximately in the middle of the range 0.006,s,0.02 of
the existence of the stochastic oscillations. This result
general property of SR@1–5#.

In conclusion we note that the supersensitivity of the s
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chastic relaxation oscillations to very small signals is a rat
universal phenomenon. Our study shows that the burs
noises and the stochastic resonance take place in simple
namical systems where relaxation oscillations arise abru
and the value of the control parameter lies in the vicinity
a Hopf bifurcation. In particular, we numerically confirme
that such supersensitivity to the small noise and the sm
signals occurs in nonequilibrium photogenerated electr
hole plasma@15#, the biochemical Gierer-Meinhardt mode
of morphogenesis@12#, and the Hindmarsh-Rose model o
excitable neurons@16#. Equations for the models are give
accordingly in@9,17,18#.
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