PHYSICAL REVIEW E VOLUME 61, NUMBER 4 APRIL 2000

Stochastic resonance in the Brusselator model
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Using the Brusselator model, we show that in a simple dynamical system small noise can be converted into
stochastic spikewise oscillations of huge amplitbarsting noisesin the vicinity of a Hopf bifurcation.
Small periodic signals with amplitude several times less than the noise intensity transform these stochastic
oscillations into quasiperiodic large-amplitude spikewise oscillations or small-amplitude quasiharmonic oscil-
lations, depending on the signal form.

PACS numbdps): 05.40—a

There are nonlinear systems that possess a large noisé>A =1+ « with respect to the perturbations with the fre-
dependent susceptibilifii—5]. In these systems phase tran- quencywo= a2, wherea= TolT,.
sitions can occur under the action of small noises in them Let us analyze in more detail the small-amplitude quasi-
[6]. They can greatly amplify weak signals in the presence oharmonic oscillations foA close toA, whena<1. We seek
the noise, and the signal-to-noise ratio in them can increase
with noise. The supersensitivity to noises and small signals i< - (a) _ 1
I . . 1.0 B | (b)
observed in different kinds of systems and is called stochas n . 100 - A,
tic resonancgSR) [1-5]. In particular, SR takes place in 08 3 4 2 /
bistable systems where it is characterized by random transi
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tions from the one stable state to the other stimulated by botl 0.75
noise and the sign4ll—5].

In this paper we show that SR can occur in simple
monostable dynamical systems in the vicinity of a Hopf bi- 054~
furcation. We use the Brusselator model as an example. -

The Brusselator model is a widely used model of auto- g 25
catalytic chemical reactions. A scheme of this modédl7is
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whereA andB are the initial chemical substancé3,and E
are the final chemical substances, ahendY are the inter- 12 (c) 8 N
mediate chemical substances. The second of these reactio®,n -
is autocatalytic and describes self-production of the sub- 10 ﬁ%%wc
stance X called the activator. The process of self- 0.8 | ! | ! I
reproduction is controlled by substan¢ealled the inhibitor. 0 4 t 8 12
In the simplest case the reactiofly are described by the
following equationd7,8]: 100~ (d) 0 n
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FIG. 1. Quasiharmonic and spikewise relaxation oscillations:
the stable limit cyclega), the bifurcation diagrantb), the depen-
dence of the amplitudes of the oscillatidBg on the control param-
eter A; the forms of the quasiharmonic oscillatiof® and the re-
laxation oscillations(d). From the numerical solution of Eq&2)

where # and » are concentrations of the activator and the
inhibitor, respectivelyr, andr, are time scales of the and
7; Alis a control parameter. Equatio(® and(3) were ana-
lyzed in[7-10. The nulicline of Eq.(2) hasA-like shape .4 (3) with @=0.01 andA=A,+0.1x= 1.016 for (a) and (d). In
[thin curveA in Fig. 1(@)] and intersects the nullicline of Eq. i Ry i

(a) the thin curveA shows the nullcline of Eq2). The upper inset

(3) at the pointd=6°=1 and »=7°=A. This point deter- 4 the right of(a) shows the limit cycle near the unstable equilib-
mines the only equilibrium state. This state is unstable whefiym state 6= 6,=1 and 7= 7,=A for different values ofAA

=A—-A,, where A;=A,=1+1,50 and AA=0.1« for curve 1,
AA=0.05 for curve 2,AA=—0.05 for curve 3AA=—0.1« for
*Electronic address: postmaster@cfrfm.msk.su curve 4. The unit of time is-,, .
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the amplitude of the oscillations as a seriés (6—6,)  SA g:g;%mm
=3B, expinwt). Substitutingd into Egs.(2) and (3) and oo—— T i A e Ml

using the Bogolyubov-Mitropolskii methdd 1] we find that 20_(b) 2 4 ® &t
the amplitudeB, is determined by the equation 0
101 ’
2_ a(A_Ao))
PiTa 2A-A) @ ey s st mamartio
2 4 6 8 t

From E o : : 0.002—(C)

q(4) follows thatd B]_/dA at two pOInts[Flg. 350 &\/\/\/\/V\/\/\/\/\/\/\/\/\/\/V\/\N\/\ﬂ
1(b)]: A=A, andA=A,=1+3a=A,+3a. Note that the oo ‘ . \ ! .
difference A4—A,,) is very small whena<1. This means @ * B iz t
that the small-amplitude quasiharmonic oscillatidisg. 0 :g@\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
1(c)] occur only for A very close toA,. Their amplitude 0.9 | | | . |
increases sharply wheh— A, and they transform abruptly 4 8 12 t
into periodical relaxation oscillations At>A,. These relax- 56, 0.008—(0)
ation oscillations have the form of spikgsig. 1(d)]. Their ool L L 4 1 1 11 1 1]
amplitude is proportional ta~*>1 and the period is deter- e —— " ‘
mined by valuer, [7,8,12,13. The limit cycle correspond- 200
ing to the spikewise oscillations is shown by the thick curve g {(f) | | | | I | I I | I |
1in Fig. 1(a).

WhenA is decreased the relaxation oscillations abruptly —® W i
disappear alA=A,. The general formula foA, was ob- S ") t
tained by Baer and Erneyg4]. From this formula it follows T af d
that A,=A_+ 3« for the Brusselator model up to second °-5‘\JD§ b
order ina. ThusA,=A,>A,, and the bifurcation diagram of C ] ) A ‘ [ . ‘
the Brusselator model has the form shown in Figh)li.e., 0w p 8 o 12 6 o 20
the Brusselator model is dynamically monostable for all val- °
ues ofA. FIG. 2. Oscillations in the presence of the noise and the small

From Fig. 1b) one can see that the small-amplitude signals: fluctuations of the control parametefa), stochastic spike-
quasiharmonic and the large-amplitude relaxation oscillawise oscillations(b), small sinusoidal signal with frequency
tions transform abruptly one into another in a very small=, (c), the corresponding quasiharmonic oscillaticd small
region nealm=A,=A, . It means that small fluctuation$A periodic spikewise signale), the corresponding quasiperiodic
of the parameteA [Fig. 2@)] nearA=A, can transform into  spikewise relaxation oscillation§), the spectra corresponding to
huge (bursting noises related to the random transitions be-these oscillationgg). From the numerical solution of Eq&) and
tween the quasiharmonic and the relaxation oscillatjging.  (3) with =0.01 andA=A,—0.05, whereA;=A,=1+1,5a and
2(b)]. the noise intensityr=0.01. The curves b, d, and f, if@) corre-

The fluctuationsdA=[A(t) —Ag], whereAg=A,, have ;pond to the oscillations shown ¢h), (d), and(f). The unit of time
been simulated as a random pulse sequence. The pulse af7-
plitude and duration had a Gaussian distribution with the
dispersiona?. For stochastic integration we have used theoccur in a certain range af (0.006<¢<0.02 for «=0.01
Euler method to avoid problems with correlations to theand A=1.0145). Their spectrum is presented by curve b in
noise. We have chosen an integration step which is at leaglg. 2(g). We have calculated the spectrum using the stan-
an order of magnitude smaller than the mean duration of theard Fast Fourier TransforifFFT), method and have nor-
random pulses and. We found that the same results are malized it to the square root of the oscillation power.
obtained by using the fourth-order Runge-Kutta method. We have found that the stochastic oscillations are super-

We carried out the numerical analysis of E(®.and(3) sensitive to very small external signals. These signals have
with a<1 and found the following results. The quasihar- been modeled by an additional tefn(t) in the right-hand
monic oscillationgFig. 1(c)] arise spontaneously whek,  side of Eq.(2). It means that the concentration of initial
satisfies the conditiol,<Ay<Aq and the fluctuation$A  substanceB varies with time. Our simulations show that the
are very small. When the noise intensfyig. 2@)] o ex-  stochastic spikewise oscillatiof&ig. 2b)] transform into
ceeds some critical value (0.006 far=0.01 and A, small-amplitude quasiharmonic oscillatioffSg. 2(d)] when
=1.0145) these oscillations transform into a stochastic sethe signal has periodic form; in particular, whe(t)
quence of spikes of different amplitudes and duration which=b, cost) with the frequencyw~wq [Fig. 2(c)]. The
alternate with quasiharmonic small-amplitude oscillationsspectrum of the quasiharmonic oscillations is shown by
[Fig. 2(b)]. When the noise intensity increases tandems oturved in Fig. 2(g). This effect takes place whew>0.20,
several spikes appear. They are separated by the intervalsicé., even when the signal amplitude is about five times less
the order ofr,, and their amplitudes are close to each otherthan the noise intensity-.

At relatively high values ofr (0>0.02) the stochastic os- When the signal has the form of the small-amplitude
cillations transform into the quasiperiodic relaxation spike-spikes with the period of order, [Fig. 2(€)] the stochastic
wise oscillationgFig. 1(d)]. Thus the stochastic oscillations oscillations[Fig. 2(b)] transform into quasiperiodic relax-
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ation spikewise oscillationgFig. 2(f)]. Their spectrum is chastic relaxation oscillations to very small signals is a rather
shown by curve in Fig. 2(g). This effect takes place when universal phenomenon. Our study shows that the bursting
the spike amplitude is about five times less than the nois@oises and the stochastic resonance take place in simple dy-
intensity o. Thus, small periodic spikewise signals are am-namical systems where relaxation oscillations arise abruptly
plified more than 10 times in the presence of the fluctua- and the value of the control parameter lies in the vicinity of
tions of A. Their amplification does not occur without the 3 Hopf bifurcation. In particular, we numerically confirmed
fluctuations. that such supersensitivity to the small noise and the small
Our calculations also show that the signal-to-noise raticsignals occurs in nonequilibrium photogenerated electron-
(SNR) reaches a maximum at=0.01=«. This value lies  pgje plasme15], the biochemical Gierer-Meinhardt model
approximately in the middle of the range 0.606<0.02 of ¢ morphogenesi§12], and the Hindmarsh-Rose model of

the existence of the stochastic oscillations. This result is xcitable neuron§l6]. Equations for the models are given
general property of SR1-5]. I accordingly in[9,17,18.
In conclusion we note that the supersensitivity of the sto- Y
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